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Abstract—In this paper, we propose a method to
analyse the coherence of existing curricula at higher ed-
ucation institution. We focus our attention to engineer-
ing programs at universities but the proposed method
is by no means restricted to those cases. In contrast
to other known methods, our approach is quantitative,
decentralised, asynchronous, allows to analyse entire
programs (in contrast to single courses) and does not
depend on using specific teaching methods or tools.

We propose to perform this quantitative assessment
in two steps: first, representing the university program
as an opportune graph with courses and concepts as
nodes and connections between courses and concepts as
edges; second, analysing the structure of the program
using methods from graph theory.

We thus perform two investigations, both leveraging
a practical case – data collected from three engineer-
ing programs at two Swedish universities: a) how to
represent university programs in terms of graphs (here
called Concepts-Courses Graph (CCG)), and b) how to
reinterpret the most classical graph-theoretical node
centrality indexes and connectivity and network flow
results in order to analyse the program structure,
including to discover flows and mismatches.

Index Terms—Concepts-Courses Matrix (CCM),
Concepts-Courses Graph (CCG), university program
design, graph theory, centrality, connectivity

I. Introduction

A. Background
Developing curricula is a complex task that involves

creating and assessing proposals in different organizational
and decision contexts. There is a significant body of liter-
ature dealing with models of curriculum design, e.g., [20].
As reported in [10], two established models dominate: the
Objectives Model, that starts by specifying the objectives
or learning outcomes defined as measurable performances,
see also [3], and the Process Model, that starts by defining
course content and specifying criteria to assess students’
knowledge of this content. Several variations on these
models exist (e.g., Tyler’s, Wheeler’s, and Kerr’s Models).

When it comes to the individual courses in a program,
a new curriculum might comprise courses that already
existed for example in a different but similar program, and
new courses that are designed for the specific curriculum.
Deciding how to segment the material into existing or
new courses often follows a discipline-centered approach.
This is likely due to the ease of practical implementation

given numerous books and support material available to
aid course designers, e.g., [15, 4, 19].

It is well known that understanding how knowledge
within a course or across courses in a program is con-
ceptualised can provide a clearer basis for creating a
structure and progression that better supports student
learning. Towards reaching this goal, a well known strategy
is the so-called black-box approach to the sequencing of
a curriculum [5]. This development tool has been pro-
posed as part of the Conceiving, Designing, Implementing,
and Operating (CDIO) standard for the management of
university programs and entails representing every course
within a program as a set of inputs (e.g., prerequisite
skills and knowledge) and outputs (e.g., contributions to
the final learning outcomes). Coupling this information
with all courses is expected to enable discussions, make
connections (or lack thereof) visible, provide an overview
of the program, and eventually serve as a basis for both
planning and improving. However, this tool is still quali-
tative, and does not provide quantitative indications that
are not subject to personal interpretations.

B. Curricula Management
Curricula management is usually required during the

entire life span of a university program for several im-
portant reasons. Even in the best designed and aligned
programs, courses may be moved within the curriculum
due to pragmatical needs (e.g., they do not fit in the
schedule from logistical reasons, or there is no teacher
available) leading to changes in how and which knowledge
can be or is taught. Further, the profiles of the teachers
can, consciously or unconsciously, change the curricula
over time at least gradually.

At the same time, higher education institutions strive
to more heavily integrate research-based practices at all
levels from teaching to program design and development.
In fact, as pointed out in [18, p. 6], this institution-
level transformation is important, and should be reflected
in opportune transformations of the university programs.
However, the vagueness and lack of facility to objectively
measure the goals of higher education may lead faculty
members to realize and prioritize these goals based on
their own interpretations [6, 17]. Indeed, this may lead
to decisions that are heavily steered by charismatic peo-
ple with strong opinions, or affected by board members’
lack of time/interest, or by communication difficulties,



especially when program design and management involves
cooperation between academics from different disciplines
or traditions.

Yet another problem is that a program board cannot
have full control of all parts of a program, much less on how
a course is examined. It is also the case that some goals
may be implicit, unspoken or simply assumed obvious.
Moreover, in many cases it is not clear what a specific
course shall deliver in form of decided (or intended) knowl-
edge accordingly, or what is its intended connection to
other courses and content of the program.

Hence, in summary we identify the following short-
comings in the common practise of program boards to
maintain coherence within a curriculum or part of it: (i)
this operation is typically done centrally (by the program
board), which usually cannot collect or use all relevant
information; (ii) it involves collecting, revising and review-
ing information manually, which limits how much data can
be processed, and (iii) it is further done at discrete time
instances / according to fixed cycles, and this may delay
or prevent the detection of mismatches (specially if long
temporal delays are present between the implementation
of local changes in courses’ contents and their theoretical
reporting in the next revision of the program).

In some cases detailed information about a course and
its contents and detailed data are available, specially
if the courses are taught through Intelligent Tutoring
Systems (ITSs), which record when students passed or
failed quizzes, accessed certain material and many other
aspects related to student behaviour and learning. The
insights are then often used to model the students and
derive strategies to better adapt the teaching experience
to the specific student’s needs. The tools are particularly
useful when teaching large classes such as in MOOCs.
However, they are not often used in traditional university
programs since it requires to transform the course such
that it can be taught using an online tool (often requiring
a complete new set of materials) and having a suitable
electronic tool available, which might not be affordable or
desirable for all universities. However, since ITSs are not
widely used in standard university programs, a curriculum
maintenance system should not depend on data from
such electronic systems. Moreover, the purpose of ITSs
is to adapt teaching material and learning strategies to
individual students. In contrast, a curriculum maintenance
system aims at improving the quality of curricula coher-
ence and maintenance efforts and should also be applicable
to any university context, independently of which teaching
method is used in the different courses.

C. Introducing Quantitative Management

In this paper, we suggest a method that allows for build-
ing a “curriculum monitoring system” which is expected
to improve the current method outlined above by being:

• decentralised and collaborative, by directly involving
primarily the teachers and possibly also students in
the program (a component that also increases the
probability that they will accept and act upon the
results),

• continuous and asynchronous, in the sense enabling
to assess the coherence of the program, curriculum or
part of it at any time (i.e., not necessarily being tied to
fixed time instances) and as soon as some new data
are available (i.e., asynchronous as not needing the
collection of every data from every courses to already
start providing actionable information),

• flexible, in the sense that allows to include courses
taught with a wide range of teaching and learning
methods,

• data driven, in the sense of allowing to analyse the
curriculum, its knowledge flow and its coherence
with computer aided objective tools (compared to
summarising and revising the information manually,
potentially including more data than humans can
usually handle).

We expect that quantitative methods that can comple-
ment classical discussion-based approaches should – at
least intuitively – lead to more sustainable and efficient
management of university programs, and lead to the other
ancillary benefits described in the statement of contribu-
tions below.

We propose a strategy that makes use of concepts
from graph theory, such as analysing the node centrality,
connectivity and flow in a network that describes how
concepts and courses are related within a program. Our
work relates thus to existing works that consider graph
theoretic approaches for the management of curricula
studies.

An example of such a method is the one summarized
in [14], where the author collected in her PhD thesis an
extensive approach to perform a quantitative analysis of
the structure of curricula by means of four distinct graphs
that could be used to create a study plan for students. The
objectives of her body of work are on helping teachers and
students create personalized study plans for individualized
students learning through graph theory. This means that
there is no explicit focus on how to help teachers under-
stand how to compile these graphs, collaborate to compile
them, and use the results to foster alignment among the
stakeholders.

The approach presented in [1] was used to analyze con-
nections between courses according to curriculum struc-
ture in order to understand the coherence and structure
within a university program. This work focuses on defining
and analysing the network of prerequisites of the various
courses, with the purpose of understanding how their roles
can differ within a curriculum. In other words, the work
focuses only tangentially on how to use the information
provided by these networks for taking actions. Moreover,
the important questions of why courses are prerequisites



for other courses and what is learned in the courses is not
considered here.

Another paper connecting learning goals (intended as
desired results), topics, and courses within a program
is [13]. Here the authors model learning goals, topics and
courses as nodes, and model prerequisite dependencies as
edges, so that the relation between courses and topics are
represented as edges. Graph analysis techniques are then
utilized to measure several aspects of a curriculum; the
overall information is then used to perform automated cur-
riculum design operations (e.g., to automatically generate
the draft of course syllabi). It is important to note that
the focus of this paper is more on the design of curricula,
rather than on estimating the current situation. More-
over the described approaches do not include procedural
information explaining who does what from a practical
perspective (in a sense, not giving ”instructions” on how to
practically replicate the approaches in other universities.

We also report [12], that proposes to use graphs-oriented
approaches to answer key questions on where to focus the
assessments, data collection, and corrective actions within
the curriculum. The focus here is thus on how to analyze
systematically and quantitatively the program contents so
to help faculty and administrators that are tasked with
creating quality assurance and assessment schemes.

With respect to the graph-theoretic approaches for rep-
resenting university program contents discussed above, we
focus on implementing a collaborative and team-based
strategy for obtaining graph-oriented representations that
can help aligning expectations and language specially
among the teachers, and between teachers and students. In
a sense, we are more concerned with creating conditions
that favor the implementation of constructive alignment
paradigms. We thus devise a strategy that is a bottom-
up approach to obtaining graph-oriented representations
of university programs.

Structure of the manuscript: Section II describes the
tools for collecting and representing quantitative infor-
mation about a generic university program. Section III
discusses how classical node centrality indexes and graph
connectivity can be interpreted and applied in our context
of university programs analysis. Section IV reports and
examines the results obtained from field applications of
the proposed method. Finally, Section V presents some
concluding remarks and suggests some future research and
development efforts.

*

II. The Concepts-Courses Matrix and the
Concepts-Courses Graph

To build a tool that teachers can use in a bottom-up
fashion to quantitatively evaluate and analyze the struc-
ture of the university programs related to their courses,
we exploit the intuition that courses within a program
are connected through a flow of concepts that are taught
throughout the duration of a given program. This intuition

TABLE I: Part of a Concepts-Courses Matrix taken from
the field case of Electrical Engineering, academic year 2017
/ 2018, Uppsala University, Sweden.

1TE705 1TE704 1MA008 1TE667
Intro Components Algebra & El. Circ.

to El. Eng. & Circuits Vector Geom. Theory

complex num. 2 2
vectors 2 1

sys. of lin. eq. 2 2
Ohm’s law 2 2

Kirchoff’s laws 2 2
pot. voltage 2 2

linearity
matrices 1 1 2 2

work, energy 2 2
int. calculus 1

is common especially in engineering disciplines, where
constructivist interpretations of knowledge tend to prevail.

To highlight the connections among courses, we suggest
to follow a procedure based on executing two separate
steps: acquire the data, as described in Section II-A, and
visualize the data, as described in Section II-B.

A. Data acquisition through the Concepts-Courses Matrix
tool

The simplest teachers collaboration strategy that we
devise is to let them define a table, in the following denoted
as Concepts-Courses Matrix (CCM), where the columns
/ rows correspond to the courses / concepts within the
program (see Table I for an example). A CCM thus
allocates one column per course j and one row per concept
k, so that the value of each (k, j)-th element may be used
to quantify how relevant the concept k is for course j on
a predefined scale. As for which scale to use, as indicated
in [9] a simple option consists in “0” = not relevant, “1”
= somewhat relevant but not central, and “2” = very
relevant / central for the course. A more refined option
may instead consist in associating a number to each level
of an opportune taxonomy (e.g., Bloom’s), and then let
each (k, j)-th element in the CCM be either 0, if concept
k is not related to course j, or the number corresponding
to the learning level that students should ideally reach
about the k-th concept when they successfully conclude
course j. Note that, despite being more informational,
using taxonomy levels would require all the collaborating
teachers that define these tables to be acquainted with the
concept of taxonomy and share the same interpretation of
the meanings of the various levels.

Building a complete CCM for a specific program or
part of it at a specific department requires the persons
collaborating on the creation of the CCM executing two
steps: a) defining which concepts shall be included, and b)
interviewing (also through internet-based tools) experts
that may give indications on the values of the elements in
the matrix.

As for step a), a natural strategy is to first build an
initial list of important knowledge by inspecting each



course description in the program (or part of it), and
receive feedback on this from the board and the teachers
involved in the program (or part of it). A different option
may be to consider which questions are asked in the
various exams of the various courses.

As for step b), one may exploit several possibilities:
Inputs from the teachers: One option is to collect

relevant data for each individual course from the teacher
teaching that specific course, as she/he can be regarded
as an expert on her/his particular subject (so that she/he
can often produce such information with ease). However,
in our experience we noticed that this strategy has several
disadvantages. First, teachers might be unwilling to spend
time on preparing such data, especially when the CCM
comprises a long list of concepts, or if they do not see im-
mediate benefits from doing so. Further, such information
will inevitably reflect what each teacher thinks or desires
to teach in her/his course. This information might be quite
different from the perception of both students and other
teachers or the effects actually achieved in terms of what
students learn. Strategies to mitigate these subjective
distortions are proposed and analyzed in Section IV below.

Inputs from the students: To complement and vali-
date the inputs from the teachers we consider also asking
students to provide information on the various courses that
they have been taking. This information may however be
distorted, too. For instance, students might not always
understand how concepts, facts and other knowledge are
interrelated or which knowledge is a prerequisite for a
given course. To do so, a metacognitive understanding
of the course is required, but in our experience this does
not happen for all the students and often only after some
time of reflection. We expect that some of these issues
can be resolved or attenuated by averaging over the data
from several students. One might also consider combining
the information from students with inputs from teachers
or other sources. But great care should be taken when
intending to do so. Indeed, despite asking the same ques-
tion to students and teachers, namely, which concepts were
required or developed by a given course, their answers will
differ due to their perspectives. Teachers will likely answer
according to what they intend to teach, also influenced
by their usually much wider metacognical understanding
and reflection of the material. In contrast, students will
answer according how they understood and perceived the
course. In fact, rather than averaging, comparing the data
from teachers and students might be a more viable tool to
detect possible mismatches between teachers’ intends and
students’ perceptions.

Analysis of the exam questions: Another option (not
explored in our field tests) is to inspect which questions are
asked in the exams of the various courses, and link those
to the list of concepts created in step a). This information
would also complement the teacher input about her/his
Intended Learning Outcomes (ILOs). This approach might
be particularly useful at European universities, since ac-

cording to the Bologna process, see for example [8], exam
questions should be closely connected to, and examine the
learning outcomes, i.e. course goals. Hence, these may be
a valuable source to categorize the ILOs as well as the
course goals.

Formal sources: As another option, formal sources
such as analysing course goals or interviewing program
boards or study directors might reveal information about
which requirements higher authorities intend a course
to fulfil. However, in some cases, this might be wishful
thinking or it might be difficult or impossible to extract
relevant information as authorities might not have suffi-
cient insights into all courses. Further, course goals might
be formulated unsuitably.

Note that all information sources listed above lead to
subjective data. Indeed, objective data on which concepts
are included in which course do not exist. However, in
order to minimize the influence of subjective opinions,
several sources of information should be combined weigh-
ing the data in an appropriate manner and considering
the possible bias of each source. In our study we followed
mainly the option “inputs from the teachers”.

B. Data visualization through the Concepts-Courses Graph
tool

After obtaining the CCM described above, the program
can be represented as an undirected weighted bipartite1

graph, denoted as a Concepts-Courses Graph (CCG). The
two sets of nodes in this graph correspond to the courses
k and the concepts j within the program. The (k, j)-
element in the CCM corresponds then to the weight of
the edge between the concept node k and the course
node j (e.g., see the example in Figure 1). Intuitively, the
properties of a university program (e.g., its structure, the
relations and the relevance of the courses and concepts in
a program, the existence of potential flaws in its design)
should translate into opportune topological properties of
the CCG. If this intuition is true, then the problem of
quantitatively analyzing a university program can be cast
as the problem of analyzing the opportune graph. The
problem of understanding what can actually be inferred
about a university program through analyses of its CCG
is discussed in Sections III and IV.

C. Extending the CCM and CCG tools to distinguish
prerequisite information from taught information

The CCM and CCG tools defined and described above
may be structured in a more complex way so to include
more information. For example, one major shortcoming
of the CCM and CCG tools above is that they do not
embed why a concept is relevant for a course. For instance,

1In the sense that its nodes can be divided into two disjoint
independent sets such that all edges connect a node from one of these
sets to the other. We moreover here use “network” in the sense of
a collection of agents and connections between them which can be
represented as a graph. For definitions and a comprehensive study of
graphs and graph theory, please refer to [7].
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1TE704

1MA008

1TE667

Intro to
El. Eng.

Components
& Circuits

Algebra &
Vector Geom.

El. Circ.
Theory

complex num.

vectors
sys. of lin. eq.

Ohm’s law

Kirchoff’s laws
pot. voltage

linearity

matrices
work, energy

int. calculus

Fig. 1: Example of a CCG corresponding to the CCM in
Table I.

TABLE II: Example of part of a Directed Concepts-
Courses Matrix taken from the field case of Computer
and Information Engineering, academic year 2017 / 2018,
Uppsala University, Sweden. (T = ‘taught’ in the course,
R = ‘required’ by the course)

1DT051 1DL201 1DT093
information data computer

technology structures architecture

recursion 1 T 2 T
divide & conquer 1 T 1 T

induction 1 T 1 R
data structures 1 T 2 T

trees 1 T 2 T
lists 1 R 2 T

graphs 1 T
arrays 1 R 1 T

hashtables 1 T 2 T

a concept could be relevant because it is a necessary
prerequisite to fruitfully follow a course, or because it is
an ILO developed and taught in the course. Collecting
this type of information allows more detailed analyses.
To enable these, however, one has to let the CCM have
two columns for each course: one allocated for weights
to quantify the relevance of prerequisite concepts (e.g.,
the learning levels that students should ideally have to
be able to follow fruitfully the course), and the other one
allocated for weights of concepts taught or developed in
that course (e.g., the learning levels that students should
ideally reach about that concept after having passed the
course). Alternatively, one may indicate with an opportune
symbol whether a specific concept is required or taught by
a specific course. A field example is provided in Table II.

Correspondingly, one may extend the CCG defined in
Section II-B by letting it become a directed, weighted,
bipartite graph where edges that are directed from concept
nodes to course nodes indicate that the concepts are
required for that course, while edges that are directed from
course nodes to concept nodes indicate that the concepts
are taught by that course. The resulting graph, denoted as
a Directed Concepts-Courses Graph (DCCG), would then
look like in Figure 2. Note that combining this additional

1DT051 1DL201 1DT093

recursion

divide and conquer

induction

data structures

trees

lists

graphs

arrays

hashtables

Fig. 2: Example of a DCCG corresponding to the DCCM
in Table II, where for simplicity the weights of the edges
have been omitted, and where moreover the course nodes
are sorted temporally ascending from left (i.e., earlier
courses) to right (i.e., latter courses). The dashed red
arrows indicate concepts that are considered prerequisites
for a given course, but taught only by following courses.

information on what are requirements and what are course
outcomes can be used to, e.g., discover when early courses
treat a given concept as prior knowledge despite it being
only introduced in a later course. This occurrence is for
example highlighted with red arrows in the field-example
of Figure 2.

Our experience indicates that great care should be
given on how to graphically represent a DCCM, since it
constitutes a representation that can be very informative
for the stakeholders (i.e., boards, teachers, and students).
Up to now, our choice has been to follow these guidelines:
• plot course nodes on the bottom, in a temporally

ascending order;
• plot concept nodes in vertical piles that lie between

course nodes, and let the positions of these piles in-
dicate whether concepts are prerequisites or teaching
outcomes of the various courses.

More specifically, we propose to divide concepts in two
sets: a) the ”problematic” ones, i.e., that concepts for
which there exists some early course that treats them as
prior knowledge despite they are being introduced only
in a later course (like the ones reached by the dashed
red arrows in Figure 2), and b) the non-problematic ones.
Given a non-problematic concept, we place it:
• just before the first course that has it as a prerequisite,

if such a course exists (e.g., ”induction” in Figure 2);
• otherwise, if no courses has that concept as a pre-

requisite, then immediately after the last course that
teaches it (e.g., ”recursion” in Figure 2).

As for problematic concepts, such as ”arrays” and ”lists”
in Figure 2, our proposal is to plot them in the position
they would be if we were ignoring the edges that make
them problematic. In our experience this strategy enables
seeing the whole program as a temporal flow and helps dis-
cussions on the program structure. Other representations



are possible, but at least in our limited experience the
proposed one has been the most beneficial for the purpose
of aiding constructive meetings.

III. Data analysis methods
In this section we assume to have collected enough

information so that, for a given university program, both
the relative CCM described in Section II-A and the cor-
responding CCG in Section II-B have been compiled. Due
to the special structure of these tools (i.e., a matrix and
a graph), one can cast the problem of analyzing the prop-
erties of the program into the problem of analyzing the
properties of the corresponding matrix or graph by means
of well known and established tools from matrix and graph
theory. Our purpose is then to discuss what these estab-
lished tools say about potential structural problems of the
represented programs. The section is divided in three main
parts: Section III-A, discussing the pedagogical meaning of
several nodes centrality measures; Section III-B, discussing
the pedagogical meaning of standard network connectivity
measures; and Section III-C, discussing the pedagogical
meaning of cycles within a directed CCG.

A. Centrality measures
It can be revealing to understand how “important” or

“central” certain courses and concepts are in a program,
since this may give indications on which courses and con-
cepts should receive special attention (e.g., in the form of
additional students learning monitoring actions). To this
aim, we notice that several well-established node centrality
indexes exist in the literature (see, e.g., [7]).

Formally, we thus let the CCG be defined as the graph
G = {V, E}, where V = {1, . . . , S} is the set of nodes
composing the graph and E ⊆ V×V is the set of the edges
between the nodes. To every edge (i, j) ∈ E corresponds an
associated edge weight wij ≥ 0. Since we are considering
the situation described in Section II-B, G is static (i.e., not
time-varying) and undirected (i.e., (i, j) ∈ E ⇔ (j, i) ∈ E ,
wij = wji). Given this, the set of neighbors of a generic
node i is defined as Ni := {j | (i, j) ∈ E}. Finally note that
V is bipartite, i.e., V = Vcourses ∪ Vconcepts, and (i, j) ∈ E
must be so that either i ∈ Vcourses and j ∈ Vconcepts or vice
versa.

1) Degree centrality: This centrality index is one of the
simplest ones, being the sum of the weights of all edges
connected to a particular node, i.e.,

d(i) =
∑

j∈Ni

wij . (1)

In our pedagogical-oriented interpretation of G, the degree-
centrality indicates the weighted sum of how many courses
a particular concept is relevant (connected to) or how
many concepts are taught or are connected to a particular
course with the weight being related to the importance on
the scale {0, 1, 2}. However, this metric is very sensitive to
how the connections are weighted. For instance, consider

that, to compile the CCM as we indicated in Section II-A,
teachers have to add “1”s or “2”s to the concepts relevant
to their courses. As we noticed in our field tests, different
teachers have different compilation approaches (i.e., more
conservative teachers might think that the compilation
should focus just on core concepts, and hence assign less
overall weights than other teachers that assume that the
compilation should be “exhaustive”) . What we noticed,
thus, is that the degree centrality scores are very sensitive
to the personality of the various teachers, which is not
a desirable property. In order to compensate for this
effect, one may then think that weights can be adjusted
or normalised; however, normalising weights so that the
accumulated weights of each course add up to an assigned
number (e.g., the credit points associated to that course or
simply 1), then the degree will inevitably be this number,
so that the metric loses its value. Hence, weights should
be chosen with great care and establishing a common
understanding among teachers on how to assign weights is
essential to retrieve meaningful insights from this specific
metric.

2) Closeness centrality: This metric is intuitively de-
fined as the average length of the shortest path between a
specific node and all other nodes in the graph. Formally,
for a connected graph, it corresponds to

c(i) = 1∑
j dist(i, j) (2)

where dist(i, j) is the (geodesic) distance between node
i and j, which is the length of a shortest path between
the nodes and setting the length of the edge from k to l to

1
wkl

, see also [7]. Closeness roughly expresses how close the
particular node is to the remaining nodes of the network.
When used in our context, a pedagogical interpretation
may be how logically “far” a certain course or concept is
from other courses or concepts. In other words, if i is a
course node, and i has a very high closeness index, then
it means that it is focusing on concepts that are used by
several other courses. When i is a concept node, this index
corresponds to how diverse the related concepts are, e.g.,
if they span over a large group of different subareas of the
overall concept repertoire or not. When used for concepts,
we expect this metric to be high for concepts that are
taught or brought up in courses whose contents span over
the entire program. Consequently, concepts that are only
taken up by some courses or only during some time periods
of the program are expected to be less close.

3) Eigenvector centrality (a.k.a. eigencentrality): This
index assigns relative scores to all nodes in the network
based on the idea that connections to high-scoring nodes
contribute more to the score of a particular node than
connections to low-scoring nodes with the same weights.
Formally, the measure is defined as

e(i) = 1
λ

∑
j∈N (i)

wije(j) (3)



where λ is a constant and turns out to be the largest
eigenvalue of the adjacency matrix. A possible pedagogical
interpretation for this measure is a quantification of how
influential a course or concept is within the program.
We expect this metric to give meaningful insights into
the program structure for two main reasons: First, it is
likely to be high for courses that cover many concepts that
are also (very) relevant in (many) other courses. Second,
this more complex measure goes well beyond what can
be achieved by simply adding weights or manual analysis
of the data, and is expected to be less sensitive to the
teachers’ personal interpretations of how to compile the
CCM. Hence, we expect this measure to offer insights that
can complement the ones that more intuitive and simpler
metrics may give.

4) PageRank centrality: This is an adaptation of the
eigenvector centrality discussed above, which assigns dif-
ferent scaling factors to the edges. More precisely, it is
defined as

p(i) = α
∑

j∈N(i)

wij
p(j)∑

k∈Nj
wjk

+ 1− α
N

(4)

where the attenuation factor satisfies α ∈ (0, 1). Due to
the similarities with the eigencentrality, we expect the
results from using this metric to be of similar usefulness. A
discussion on the practical differences that we notice using
the two metrics is given in Section IV.

5) Betweenness centrality: The graph-oriented interpre-
tation of this centrality index is the one of a measure of
how often the node acts as a “bridge” along the shortest
paths between two any other nodes. Formally, the metric
is defined as

b(i) =
∑

j 6=i 6=k∈V

σjk(i)
σjk

(5)

where σjk denotes the total number of shortest paths
between nodes j and k and σjk(i) is the number of those,
that pass through node i. In our pedagogical setting this
classical index, however, seems to be of limited impor-
tance. The CCG is indeed by design a bipartite graph,
where concepts are exclusively connected to courses and
vice versa. Hence, betweenness metrics are expected to be
low for almost all nodes in the graph. This implies that the
index might not discriminate among different nodes, and
hence might not provide strong insights into the properties
of a program.

B. Connectivity and network flow analysis
To complement the centrality measures presented above

it can be useful to infer how courses and concepts are
connected among themselves: this may give quantitative
indications on how well connected the program is, which
courses / concepts complement each other, and plan fur-
ther learning / teaching monitoring & assessment activ-
ities. To analyse how a graph as a whole is connected
there exist several well-established tools; among others,

we discuss the pedagogical meaning of the connectivity,
(minimal) cuts and the network flow concepts.

1) Connectivity: An undirected graph is connected if
there exists a path between each pair of nodes. Otherwise
it is disconnected. For directed graphs, three different
definitions exist. First, consider ignoring the direction
of all edges, i.e., replacing the directed graph with an
undirected graph. If the corresponding undirected graph is
connected, the original directed graph is weakly connected.
Further, the directed graph is connected if for each pair of
nodes i and j, there exists at least a directed path from
node i to j or from j to i. Finally, if both directed paths
from node i to j and from j to i exist for all pairs of nodes
i and j, the graph is strongly connected.

For instance, if a CCG happens to be disconnected,
it reveals that different parts of the university program
have no overlap or connection. This might indicate that
concepts and courses of very different areas are included
in the program, or that the program design may have some
flaws. Hence, the teachers collaborating in the definition of
the CCG might take this as a starting point to investigate
a possibly undesired compartmentalisation of the program
by investigating the (weakly) connected components of the
graph.

We also note that a well designed curriculum will most
likely contain some weakly connected DCCG. Indeed it is
reasonable to expect that there will be pairs of nodes i
and j for which there exists no directed path from i to
j or viceversa. As an example, consider two courses that
are given in parallel, which have some shared prerequisite
concepts and possibly some shared developed concepts.
Hence, if we ignore the direction of the edges, there exists a
path between the two courses. However, as the information
flows from the prerequisites through the courses to the
developed concepts in parallel, there exists no directed
path between the two courses. The same conclusion, i.e.,
that the DCCG cannot be connected but may be weakly
connected, holds as soon as a course has at least two
prerequisites or develops two or more concepts in the same
course.

On the opposite end of the scale, a connected or strongly
connected DCCG indicates temporal or logical inconsis-
tencies in the program, since a strongly connected and
all relevant connected2, directed graph must contain at
least one cycle. Hence, connected or strongly connected
DCCGs are not desirable and hint on the need to further
investigate the curriculum structure. See Section III-C
below for more details.

2) Minimal cut: In relation to the concept of connectiv-
ity, a natural question that arises is to understand which

2The only possible, connected DCCG without a cycle is a simple
line graph indicating a rather trivial curriculum consisting of a
sequence of courses connected by exactly one concept in between,
which is developed by the previous course and serves as a prerequisite
of the following course. This case can easily be outruled by plotting
the DCCG.
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Fig. 3: Examples of basic DCCGs, where i and j refer to
courses, and x refers to a concept.

edges or nodes are essential to maintain connectivity, i.e.,
which elements must not be removed or the graph becomes
disconnected. Such sets of edges or nodes are denoted edge
or vertex cuts, respectively. Further, the minimal cut of
a graph describes how sensible a graph is to loose its
connectivity. Both the size of the minimal cut (amount
of edges or vertexes to be removed) as well as the edges or
nodes included in the minimal cut offer important insights
into the structure of the graph.

Analysing the minimal cut of a CCG can give interesting
insights into the program structure and its vulnerabilities.
For instance, the minimal vertex cut will list the courses
or concepts whose inclusion in the program is crucial to
connect different areas or aspects in the program. Also, the
minimal edge cut will reveal which conveyance of certain
concepts in certain courses is crucial to maintain connec-
tivity on the program. In other words, it will indicate
which concepts in which courses connect different areas
within a program.

3) Network flow: The weight of an edge in a network
can be interpreted as its capacity to carry a physical flow,
e.g., water. Interpreting every edge of a network as such a
capacity, it is natural to ask how many units of flow can
be transported from one part of the network to another.
Defining thus at least one source node and at least one sink
node, it is possible to compute the maximal admissible
flow that can be carried between these nodes through
well-known algorithms, e.g., [7]. Under this maximal flow
situation it is possible that some edge carries less flow
than their maximum admittable ones; e.g., in example 2
in Figure 3, the maximum flow between nodes i and j is
1, and the edge between x and j is not exploited at its
maximum capacity.

The residual capacity of an edge is then the difference
between its natural capacity versus its usage under max-
imal network flow situations. Also, note that finding the
maximal flow of a network is equivalent to finding an edge
cut of minimal capacity that would separate the sink from
the source.

To give to network flows a pedagogical interpretation
under our DCCG framework, we can interpret the weights
0, 1 and 2 in the CCG as capacities that describe two
specific phenomena. Referring again to Figure 3, possible
interpretations are:

• when the edge is from a concept x to a course j, how
much the prior understanding of the required concept
x contributes to learn the ILOs of the specific course j;

• when the edge is from a course i to a concept x,
how much the specific course i contributes to teach
/ facilitate the understanding of the concept x.

A natural question is then about how analysing the
maximal network flow associated to a DCCG can then
be helpful to understand the structure of a program, its
shortcomings, bottlenecks and redundancies.

First of all, to enable performing network max-flow
analyses, at least one source and one sink node must
be defined. For this, we propose to create two additional
nodes: “0”, as a global source, and “∞”, as a global sink
of the network flow, so that:
• node 0 symbolises the prior knowledge that students

are expected to have before starting a certain pro-
gram. Thus, node 0 connects with infinite capacity
to all concepts that are considered a required prior
knowledge, e.g., from high school education. Note
that, if for a given student or student cohort it is
known that their prior knowledge of some required
concept is limited or lacking, the capacity of the
corresponding edge from 0 to this concept node can
be lowered to analyse the consequences of this short-
coming;

• node ∞ represents the final knowledge that students
are expected to have after finishing a certain program.
All those concepts whose understanding is included or
required for reaching the goals of the program should
thus be connected to node ∞ with edges of infinite
capacity.

We expect that the decision about which concepts shall
be connected to nodes 0 and ∞ may require the teachers
and boards of the various programs extensively discussing
the program structure.

Assume then to have added to an existing DCCG these
fictitious source and sink nodes, their corresponding edges,
and to have computed the maximal and the residual flows
of the network. Some interesting cases may then arise:
First, consider example 1 in Figure 3, where both edges
(the one from course i to concept x, and the one from
concept x to course j) have the same capacity. Here the
maximal flow is such that everything entering in concept x
can also flow to course j. This can be interpreted as a well
aligned structure, where students are enabled in course i
to build up an appropriate knowledge about x, and then
use it in course j.

In contrast, examples 2 and 3 in Figure 3 might both
reveal some mismatch in the program. In example 2,
indeed, the overall maximal flow from i to j is 1, since
concept x is only taught with weight 1 in course i even
though it is required with weight 2 by the following course
j. Hence the residual flow of the edge from x to j is 1, and
a plausible interpretation of this is that students may not
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Fig. 4: Example of a cycle in a DCCGs, where i and j refer
to courses, while x and y refer to concepts. The weights
of the edges are omitted for simplicity.

be as well prepared for taking course j as expected by the
teacher of this course. In example 3, it is instead the link
from i to x that has under the max-flow regime a residual
capacity 1. A plausible interpretation of this is that not
all the effort that is put during course i into teaching x is
required for the following-up course j. In a sense, reducing
this potentially unnecessary effort during course i could
free resources that could better be allocated otherwise.

In extreme cases there may be edges with maximal
residual flows, i.e., edges that are completely unused under
maximal network flow regimes. Our interpretation is that
these events indicate grave mismatches or inconsistencies
within the analysed program. This might include concepts
that are neither taught in previous courses nor can be
considered knowledge that students should have before
starting the program, but are nevertheless required for
some course. This situation is especially critical, since
the lacking of this required knowledge may hinder the
learning of new concepts. The event may also indicate
situations where the teaching includes concepts that are
neither required in later courses nor considered desired
program goals (i.e., unnecessary material).

Finally, minimal capacity cut shows where the program
is least robust, in the sense that it shows which concepts
and courses are key for reaching the overall program goal.

C. Existence of cycles

Another pedagogically interesting analysis of a DCCG
is related to detecting cycles in the graph. For example,
consider the situation in Figure 4: here course i has
concept x as a required knowledge, and prepares students
to course j by teaching concept y. The situation is though
symmetric, since j has concept y as a required knowledge,
and prepares students to course i by teaching concept x.
Thus as soon as i and j are not taught in the same learning
period, students will not be prepared to take the first of
the courses being taught (something that theoretically will
also affect their understanding, eventually inficiating also
the attendance to the second one). And even if i and j
are instead taught in the same learning period, then this
logical fallacy can be resolved only through a great care
by the teachers of i and j in designing their own courses
so that the understanding and usage of concepts x and y
happens in parallel and simultaneously.

Generalizing, moreover, plotting a DCCG so that the
course and concept nodes follow a temporal order (as did,
e.g., the field-example from Uppsala University (UU) in
Section IV) makes every link that points ”backwards”
highlight some program inconsistency (i.e., a situation
where students will not be prepared to take a certain
course because the required concepts are being taught in
a consequent learning period). Note however that if no
cycles are present, though, this specific problem may be
resolved by opportunely changing the temporal order of
when the various courses are given.

IV. Results

We gathered data for Electrical Engineering and Com-
puter and Information Engineering at UU, Sweden, and
Engineering Physics at Lule̊a University of Technology
(LTU), Sweden, by asking teachers to allocate weights
of the scale {0, 1, 2} for the concepts in their course
in the program according to the methods described in
Sections II-A and II-C. The data were then analysed by
computing the different indices described in Section III.

The results for the centrality indices for the courses
for the two Electrical Engineering and the Engineering
Physics programs are visualised in Figure 5 (for LTU)
and Figure 6 (for UU). As discussed above, we noticed
large variations between how many accumulated weights
teachers assigned to a course, which suggests different
interpretations on the scale {0, 1, 2}. Hence, the degree
centrality for the courses for the Engineering physics
program at LTU reflect the accumulated weights assigned
for each course. This highly correlates with the teachers’
interpretation of the scale and eagerness to contribute
to the project. Further, the pagerank and eigencentral-
ity mostly follow this trend and do not offer additional
insights. Lastly, the closeness index is generally high for
all courses (with some drops for courses with very low
degree) whereas the betweenness is low for most courses
with some exceptions for courses with high degrees. In
fact, interviewing the head of the corresponding program
board, showed that these data do not reflect the perceived
importance of the courses in the program but rather the
teachers’ understanding of the scale.

In order to compensate for this effect, we normalized the
weights in the CCM for the Electrical engineering program
at UU such that all weights for a course accumulate to one.
Hence, the degree centrality, shown in Figure 6 is equal to
one for all courses and no information can be extracted for
this index. Further, as expected, the betweenness index
is low for almost all courses with the exception of some
courses, that include a large number of concepts and hence
connect many nodes in the graph. For the collected data,
the eigenvalue index and closeness index offer insights
into the program structure. Indeed, the courses with high
eigenvalue and closeness indices were clearly indicated as
central courses in the programs by the program board.



Figures 7 and 8 show the centrality indices for all
concepts in the CCMs for LTU and UU, respectively.
The concepts are ordered by their degree index and are
calculated using the original data (i.e., not normalized)
for LTU and the normalized data for UU. Note that
normalising the degree for each course node to one, does
not imply a normalisation of the concept nodes. The
degree centrality and the pagerank centrality, which is
very similar to the degree, do appear to provide an overall
reflection of how often a concept is taken up during the
program in both the normalized and the unnormalized
case. As expected, the betweenness index is low for almost
all concepts. However, for the normalized case (UU) the
concepts with high betweenness seem to indicate concepts
that are taken up by many different courses. Further, for
the normalized CCM, in cases where the degree centrality
is low for the same concept, it refers to a concept that is
taken up often but also often weighted with a 1 (compared
with important concepts receiving weight 2). The opposite
seems to be true for closeness in the normalized CCM,
which is high for almost all concepts in the program.
However, some concepts have a low closeness despite a
comparatively high degree. These are concepts that play
a relatively strong role in the program but are only taken
up in some courses in a rather intensive fashion. Note that
such insights cannot be extracted for the unnormalized
CCM for the program at LTU.

The data collected for Computer and Information Engi-
neering at UU, instead, comprise information on whether
the various given concepts shall be considered a prereq-
uisite or a teaching outcome for the courses. Part of the
corresponding DCCG is shown in Figure 9. Analysing the
DCCG reveals several interesting insights. First of all,
analysing the max flow of the graph allows understanding
mismatches in effort in the sense of spending much more
time or effort in teaching a concept, that is only required
in few or no courses with low weights, or vice versa. For
instance, consider “hashtables”, which is taught in three
courses, 1DL201 (Program Design & Data Structures),
1DT093 (Computer Architectures) and 1DL221 (Objects
Oriented Programming) with accumulated weight 4, but
only required in one single course, 1DT096 (Operating Sys-
tems), with weight 1. In contrast, the concept “induction”
is only taught in one early course, 1DT051 (Introduction to
Information Technology), with weight 1 but required for
three following courses with various weights and further
considered an intended learning output of the program.
Both cases can be found by analysing the redundancies in
the DCCG under max flow. (Links with maximal flow in
Figure 9 are shown in green and links with redundancies
are shown in blue.)

Further, analysing cycles in the graph allowed extracting
mismatches in time, i.e., between courses, where concepts
(e.g., “lists” and “arrays”) are assumed prior knowledge, or
at least a common understanding, and are hence required
in an early course (e.g., 1DT093) but are taught in a

later course (e.g., 1DT051). These cases are marked as
red arrows in Figure 9. Either, teaching these concepts
in the later courses is redundant since the teacher of the
first course correctly assumed that students would know
these concepts from earlier education as for instance high
school, or students are not sufficiently prepared for the
early course due to a lack of knowledge. It may also be
possible that the courses require or teach the concept on
different levels in Bloom’s taxonomy. In this case, no mis-
match might be present. However, in order to understand
those issues and to avoid mismatches, teachers need to
collaborate and/or exchange more detailed information. In
any case, the analysis of the corresponding DCCG allows
identification of which aspects need to be discussed or
maybe even changed in the course and program organi-
sation.

In summary, these results indicate that relevant infor-
mation can be extracted from the CCG or DCCG by
considering centrality indices of concepts and courses given
adequate normalisation of the weights or analysing the
connectivity and flow in the graph.

V. Conclusions
In this paper, we proposed a method to analyse quan-

titative data about which concepts are relevant for which
courses in a university program (provided by the corre-
sponding teachers) and the connections between them.
We showed how this information can be described by a
course-concept matrix (CCM) and a corresponding course-
concept graph (CCG). Further, by analysing the centrality
indices of the involved courses and concepts for two pro-
grams at UU and LTU in Sweden, relevant information
could be extracted. It appears that the results are better
aligned with the program boards’ perceptions and insights
if the weights in the CCM are weighted. Further, categoris-
ing concepts as required knowledge for a course or taught
in a course allows building a related DCCG. Its analysis
reveals mismatches and redundancies in the program.

Additionally, input from students might be of use in the
process of establishing concepts for courses in two major
ways. Firstly, to determine whether the concepts identified
by the teachers match the experiences of the students.
Secondly, the concepts identified by the students function
as feedback for teachers and program boards on how
courses are experienced by students. This is valuable input
for course and program development. Large discrepancies
indicate that the course misses the target, which could be
an issue in ensuring development and progression of an
intended learning curve.

In this first attempt to systemize concepts of an engi-
neering program and a tool to understand the intercon-
nections between them, we can conclude that concepts
are probably not enough to describe the learned content
from courses and the whole program. Motivated by [16]
one should rather include facts and procedural knowledge
along cite conceptual knowledge. Further, instead of using



the simple scale from 0 to 2, using the levels ranging from
“remember” to “create” from Bloom’s revised taxonomy,
[2], is expected to further improve the analysis of the
university program. However, the proposed graph theory
tools have to be carefully revised in order to obtain
meaningful results when using the taxonomy.

Also, suitable methods should be developed to visualise
and display the graph structure and highlight the obtained
results such as flows, cycles and discrepancies in a suitable
way. Even though our preliminary experience in commu-
nicating our method to students, boards, administrators
and fellow teachers revealed great interest and readiness
to adopt the new method, its success will depend on
whether the information can be presented in a useful and
understandable way for all stakeholders. We believe that
such a suitable visualisation would also help to realise some
of the goals outlined in [11] such as
• informing learners of what they can expect to achieve

from a program, so they can organise their time and
efforts;

• communicating curriculum/program goals in a mean-
ingful way to a broader community;

• helping to determine the extent to which learning has
been accomplished;

• guiding curriculum committees (within resource con-
straints) to determine program(s) of study and course
offerings;

• guiding instructors when they are designing course
objectives, content, delivery and assessment strate-
gies.

However, how to reach those goals with the help of the here
proposed tool and its extensions and further developments
needs to be investigated in the future. Another important
direction for future development is to include actors out-
side the academia, such as the industry, both by using the
(graphical) tool to allow them to get a much clearer view
on content, (program) goals and the intended progress for
each program as well as considering and combining their
demands with the program learning outcomes.
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Doris R Brodeur, and Kristina Edström. The CDIO
approach. In Rethinking engineering education, pages
11–45. Springer, 2014.

[6] Jay R Dee and William A Heineman. Understanding
the organizational context of academic program de-
velopment. New Directions for Institutional Research,
2015(168):9–35, 2016.

[7] Reinhard Diestel. Graph Theory. Springer-Verlag
Heidelberg, New York, 2005.

[8] European Commission. The Bologna Process and
the European Higher Education Area. https://
ec.europa.eu/education/policies/higher-education/
bologna-process-and-european-higher-education-area
en.

[9] Eva Fjällström, Steffi Knorn, Kjell Staffas, and Dami-
ano Varagnolo. Developing concept inventory tests for
electrical engineering: extractable information, early
results, and learned lessons. In Proceedings of the UK
Automatic Control Conference, 2018.

[10] Bernard SM Gatawa. The politics of the school
curriculum: An introduction. College press, 1990.

[11] Harry Hubball and Helen Burt. An integrated
approach to developing and implementing learning-
centred curricula. International Journal for Academic
Development, 9(1):51–65, 2004.

[12] Jay M Lightfoot. A graph-theoretic approach to
improved curriculum structure and assessment place-
ment. Communications of the IIMA, 10(2):5, 2010.

[13] Jaime A. Pavlich-Mariscal, Mariela Curiel, and Ger-
man Chavarro. CDIO curriculum design for comput-
ing: a graph-based approach. In Proceedings of the
15th International CDIO Conference, 2019.

[14] Raita Rollande. The Research and Implementation
of Personalized Study Planning as a Component of
Pedagogical Module. PhD thesis, Riga Technical
University, 2015.

[15] Patrick Slattery. Curriculum development in the
postmodern era: Teaching and learning in an age of
accountability. Routledge, 2012.

[16] Kjell Staffas. Developing requisite motivation in en-
gineering studies: A study on a master and bachelor
program in electronic engineering at Uppsala Univer-
sity. PhD thesis, Aalborg Universitet, 2017.

[17] Paul Temple. The integrative university: Why univer-
sity management is different. Perspectives, 12(4):99–
102, 2008.

[18] Gabriela C Weaver, Wilella D Burgess, Amy L Chil-
dress, and Linda Slakey. Transforming institutions:
undergraduate STEM education for the 21st century.
Purdue University Press, 2015.

[19] Jon Wiles. Leading curriculum development. Corwin
Press, 2008.

https://ec.europa.eu/education/policies/higher-education/bologna-process-and-european-higher-education-area_en
https://ec.europa.eu/education/policies/higher-education/bologna-process-and-european-higher-education-area_en
https://ec.europa.eu/education/policies/higher-education/bologna-process-and-european-higher-education-area_en
https://ec.europa.eu/education/policies/higher-education/bologna-process-and-european-higher-education-area_en


[20] Jon Wiles, Joseph Bondi, and Hua Guo. Curriculum
development: A guide to practice. Merrill Publishing
Company, 1989.

0 0.2 0.4 0.6 0.8 1

F0051T
M0029M
F0004T

M0030M
F0005T

M0031M
F0006T

M0032M
D0017E
K0016K
E0003E

M0018M
F0007T

M0014M
F0008T
F0030T
S0001E
S0008M
F0047T
F0048T
E0007E
R0005N
R0004E
S7013E

centrality
(←

tim
e)

co
ur

se

degree closeness eigenvector
betweenness pagerank

Fig. 5: Measured courses centrality indexes for Engineering
physics at LTU, Lule̊a, Sweden.
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