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Abstract

In this note we consider the problem of determining necessary and sufficient condi-
tions for the existence of a common quadratic Lyapunov function for a pair of stable
linear time-invariant systems whose system matrices are of the form A, A − ghT ,
and where one of the matrices is singular. A necessary and sufficient condition for
the existence of such a function is given in terms of the spectrum of the product
A(A− ghT ). Examples are presented to illustrate our result.

1 Introduction

Consider a switching system described by

ẋ = [A− σ(t, x)ghT ]x (1)

where the state x(t) and g, h are real vectors, A is a real square matrix, and the scalar
switching function σ satisfies

0 ≤ σ(t, x) ≤ 1 . (2)

Suppose A is a Hurwitz matrix, that is, all its eigenvalues have negative real parts; then
the system corresponding to σ(t, x) ≡ 0, that is, ẋ = Ax, is globally asymptotically stable
about the origin of the state space. Suppose also that all the eigenvalues of A− ghT have
negative real parts except for a single eigenvalue at zero. Then the system corresponding
to σ(t, x) ≡ 1, that is, ẋ = (A− ghT )x, is stable (but not asymptotically stable) about the
origin and all its solutions are bounded. We can guarantee that the switching system (1) is
stable about the origin and all solutions are bounded if there is a real symmetric positive
definite matrix P satisfying the following two matrix inequalities.

AT P + PA < 0 (3)

(A− ghT )T P + P (A− ghT ) ≤ 0 . (4)

Also, the stability/boundedness properties are guaranteed for any switching function pro-
vided it satisfies the constraint (2). Satisfaction of the above inequalities implies that the
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quadratic function V (x) = xT Px is a Lyapunov function for the system in the sense that
along all solutions, one has V̇ ≤ 0; this guarantees the desired stability/boundedness prop-
erties. We refer to a matrix P = P T > 0 satisfying (3) as a commmon Lyapunov matrix for
A and A− ghT ; the corresponding Lyapunov function is referred to as a common Lyapunov
function.

Such stability problems arise in a variety of applications; for example, in applications
where integrators are switched in and out of feedback loops to achieve certain performance
objectives [?, ?].

In this short note, we show that the following simple condition is both necessary and
sufficient condition for the existence of a common Lyapunov matrix P .

The matrix product A(A − ghT ) has no eigenvalues with negative real part and only one
zero eigenvalue.

In the next section we present some results on positive real transfer functions which are
useful in the development of the main result. In particular, Theorem 2.1 provides a simple
spectral characterization of strictly positive real transfer functions. We believe this is a
useful result on its own and not just for the purposes of obtaining the main result. Section
?? develops the main result of this paper. To achieve this we also need the Kalman-
Yacubovich-Popov lemma for proper SISO systems that is found in most textbooks; see
the book by Boyd [1] or Khalil [2]. Throughout, known results are quoted without proof
whereas new results are given with full proofs.

2 Strictly positive real transfer functions

Before obtaining our main result, we obtain some preliminary results on strictly positive
real (SPR) transfer functions. In everything that follows, A is a real n× n matrix and b, c
are vectors in real n-vectors.

Recall that a scalar transfer function H is strictly positive real (SPR) if there exists a scalar
α > 0 such that H is analytic in the region of the complex plane for which Re(s) ≥ 0 and

H(ω−α) + H(ω−α)∗ ≥ 0 for all ω ∈ IR . (5)

We say H is SPR if H(ω)+H(ω)∗ is not identically zero for all ω ∈ IR. For convenience,
we will include regularity as a requirement for SPR.

Lemma 2.1 [2] Suppose A is Hurwitz. Then the transfer function H(s) = cT (sI − A)−1b
is SPR if and only if

H(jω) + H(jω)∗ > 0 for all ω ∈ R (6)

lim
ω→∞

ω2
(
H(jω) + H(jω)∗

)
> 0. (7)
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Lemma 2.2 The transfer function H(s) = cT (sI−A)−1b is SPR if and only if the transfer
function HI(s) = cT (sI − A−1)−1b is SPR.

Proof : Suppose H is SPR. The identity (sI − A−1)−1 = s−1I − s−2(s−1I − A)−1 implies
that

HI(s) = s−1cT b− s−2H(s−1) ; (8)

hence, whenever ω 6= 0,

HI(ω) + HI(ω)∗ = ω−2(H(−ω−1) + H(−ω−1)∗) > 0

Considering limits as ω → 0,

HI(0) + HI(0)∗ = lim
ω̃→∞

ω̃2(H(ω̃) + H(ω̃)∗) > 0

Finally, we note that

lim
ω→∞

ω2(HI(ω) + HI(ω)∗) = H(0) + H(0)∗ > 0 .
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The core of our main result is based on a spectral condition for strict positive realness [3].
This result follows as an immediate consequence of the following lemma.

Lemma 2.3 [4, 5, 6] Let H(s) = d+cT (sI−A)−1b where A is invertible. Then, H(s−1) =
d̄ + c̄T (sI − Ā)−1b̄ with Ā = A−1, b̄ = −A−1b, c̄T = cT A−1 and d̄ = d− cT A−1b.

Proof : Using the definitions in the lemma,

d̄ + c̄T (sI − Ā)−1b̄ = d− cT A−1b− cT A−1(sI − A−1)−1A−1b

= d− cT A−1
(
I + (sI − A−1)−1A−1

)
b

= d− cT A−1(sA− I)−1sAb

= d + cT (s−1I − A)−1b,

which proves the assertion of the lemma. 2

Comment : Note that when H is SPR we must have d̄ > 0. This follows from the fact
that d̄ = H(0) and H(0) + H(0)∗ > 0 since H is SPR.

Now we give the aforementioned spectral characterisation of strict positive realness.

Theorem 2.1 Suppose A is Hurwitz. Then, the following statements are equivalent.

(a) The transfer function H(s) = cT (sI − A)−1b is SPR.
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(b) cT A−1b < 0 and the matrix product A−1(A−1− A−1bcT A−1

cT A−1b
) has no negative real eigen-

values and exactly one zero eigenvalue.

(c) cT Ab < 0 and the matrix product A(A− AbcT A
cT Ab

) has no negative real eigenvalues and
exactly one zero eigenvalue.

Proof : In what follows it is convenient to work with H(s−1) as in Lemma 2.3. In
particular, the conditions for SPR of H may be restated in terms of the transfer function
H(s−1). Specifically, conditions (6) and (7) for SPR are equivalent to

lim
ω→∞

H(−jω−1) + H(−jω−1)∗ > 0 (9)

H(−jω−1) + H(−jω−1)∗ > 0 ∀ ω ∈ IR ω 6= 0 (10)

lim
ω→0

1

ω2

[
H(−jω−1) + H(−jω−1)∗

]
> 0 (11)

Condition (9) is equivalent to cT A−1b < 0.

Now consider conditions (10) and (11). Since Ā is invertible, Lemma 2.3 tells us that

H(−jω−1) = d̄ + c̄T (jωI − Ā)−1b̄ (12)

with Ā, b̄, c̄, d̄ defined in Lemma 2.3. Using the results in [7] we have

c̄T (jωI − Ā)−1b̄ +
[
c̄T (jωI − Ā)−1b̄

]∗
= −2c̄T (ω2I + Ā2)−1Āb̄

Since d̄ = −cT A−1b > 0, we can write

H(−jω−1) + H(−jω−1)∗ = 2d̄ det
[
1− 1

d̄
c̄T (ω2I + Ā2)−1Āb̄

]

= 2d̄ det

[
I − 1

d̄
(ω2I + Ā2)−1Āb̄c̄T

]

= 2d̄ det
[
(ω2I + Ā2)−1

]
det

[
ω2I + Ā2 − 1

d̄
Āb̄c̄T

]

Thus,

H(−jω−1) + H(−jω−1)∗ =
2d̄ det[ω2I + M ]

det
[
ω2I + Ā2

] . (13)

where

M := Ā

(
Ā− 1

d̄
b̄c̄T

)
= A−1

(
A−1 − A−1bcT A−1

cT A−1b

)
.

Since A is Hurwitz, all the real eigenvalues of Ā2 = A−2 are positive which implies that
det[ω2I+Ā2] 6= 0 for all ω. Noting that det

[
ω2I + Ā2

]
> 0 for ω sufficiently large, it follows

4



from continuity arguments that det[ω2I + Ā2] > 0 for all ω. Recalling that d̄ > 0 it follows
from the above identity (13) that conditions (10) and (11) on H(−ω−1) are respectively
equivalent to

det[ω2I + M ] > 0 for all ω ∈ IR, ω 6= 0

lim
ω→0

1

ω2
det[ω2I + M ] > 0 .

Since, det[ω2I + M ] > 0 for large ω, the above conditions are equivalent to

det[λI −M ] 6= 0 for all λ ∈ IR, λ < 0 (14)

lim
λ→0

1

λ
det[λI −M ] 6= 0 . (15)

Condition (14) is equivalent to the requirement that M has no negative real eigenvalues.
Since Mb = 0 and b 6= 0, the matrix M must have at least one zero eigenvalue; hence
det[λI − M ] = λq(λ) and all the other eigenvalues of M are given by the roots of the
polynomial q. Thus condition (15) is equivalent to q(0) 6= 0, that is, zero is not a root of
q. Thus (15) is equivalent to the requirement that M has only one eigenvalue at zero.

The equivalence between the first and third statement of the lemma follows from the SPR
equivalence of cT (sI−A−1)−1b and cT (sI−A)−1b as stated in Lemma 2.2. 2

3 Main result

In everything that follows, A is a real n× n matrix and g and h are real n-vectors.

The proof of the main result requires the following KYP lemma.

Lemma 3.1 [1] Suppose (A, b) is controllable and (A, c) is observable. Then, the following
statements are equivalent.

(i) The matrix A is Hurwitz and the transfer function H(s) = cT (sI − A)−1b is SPR.

(ii) There exists a matrix P = P T > 0 that satisfies the constrained Lyapunov inequality:

AT P + PA < 0

Pb = c .

(iii) There exists a matrix P = P T > 0 such that the following Lyapunov inequalities are
satisfied:

AT P + PA < 0

−
(
cbT P + PbcT

)
≤ 0.

5



Comments : The best discussion of a strictly positive real transfer function can still be
found in Narendra & Taylors book on Frequency domain stability criteria [8]. The assump-
tion that (A, c) is observable ensures that P is positive definite in the theorem [9].

Theorem 3.1 (Main Theorem) Suppose that A is Hurwitz and all the eigenvalues of
A − ghT have negative real part, except one, which is zero. Suppose also that (A, g) is
controllable and (A, c) is observable. Then, there exists a matrix P = P T > 0 such that

AT P + PA < 0 (16)

(A− ghT )T P + P (A− ghT ) ≤ 0 (17)

if and only if the matrix product A(A − ghT ) has no real negative eigenvalues and exactly
one zero eigenvalue.

Proof : The proof consists of two parts. First we use an equivalence to show that the
conditions on A(A− ghT ) are sufficient for the existence of a Lyapunov matrix P with the
required properties. We then show that these conditions are also necessary.

Sufficiency : Let c = A−T h and let b be a right eigenvector of A − ghT corresponding to

the zero eigenvalue. Then b 6= 0, Ab = ghT b = hT bg and cT Ab = hT b. Since A is Hurwitz,
we must have hT b 6= 0, otherwise Ab = 0. Hence cT Ab 6= 0 and, without loss of generality,
we assume that b is chosen so that cT Ab = −1. In this case,

g = −Ab and hT = cT A .

Controllability of (A, b) and observability of (A, c) follow from controllability of (A, g) and
observability of (A, h), respectively.

Noting that

Z := A− ghT = A− AbcT A

cT Ab
,

it follows from Theorem 2.1 that the conditions on AZ imply that the transfer function
cT (sI−A)−1b is Strictly Positive Real. Consequently, it follows from Lemma 3.1 that there
exists a matrix P = P T > 0 such that

AT P + PA < 0 (18)

Pb = c . (19)

Pre- and post- multiplying the above inequality by A−T and A−1 shows that this inequality
is equivalent to

A−T P + PA−1 < 0 (20)
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This last inequality and (19) imply that

[
A−T P + PA−1 Pb− c

bT P − cT 0

]
≤ 0 (21)

that is,

[
A−1 b
−cT 0

]T [
P 0
0 1

]
+

[
P 0
0 1

] [
A−1 b
−cT 0

]
≤ 0 .

Since cT Ab = −1 6= 0,

[
A−1 b
−cT 0

]−1

=

[
A− AbcT A

cT Ab
− Ab

cT Ab
cT A
cT Ab

1
cT Ab

]
=

[
A− ghT −g
−hT −1

]
,

Post- and pre-multiplying inequality (21) by the above inverse and its transpose results in

[
A−1 b
−cT 0

]−T [
P 0
0 1

]
+

[
P 0
0 1

] [
A−1 b
−cT 0

]−1

≤ 0.

that is, [
(A− ghT )T P + P (A− ghT ) −Pg − h

−gT P − hT −2

]
≤ 0 (22)

It immediately follows that for the above inequality to hold, we must have

(A− ghT )T P + P (A− ghT ) ≤ 0. (23)

Necessity : We first show that if there exists a matrix P = P T > 0 satisfying conditions
(16)-(17), then AZ cannot have a negative real eigenvalue. Note that the conditions on P
are equivalent to

A−T P + PA−1 < 0 (24)

ZT P + PZ ≤ 0 (25)

Hence, for any γ > 0,
(Z + γA−1)T P + P (Z + γA−1) < 0 .

Since P = P T > 0 this Lyapunov inequality implies that Z + γA−1 must be Hurwitz and
hence, non-singular. Thus AZ + γI is nonsingular for all γ > 0. This means that AZ
cannot have a negative real eigenvalue.

We now show that AZ cannot have a zero eigenvalue whose multiplicity is greater that
one. To this end introduce the matrix

Ã(k) = Z + kghT .
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Then A = Ã(1) and inequalities (16)-(17) hold if and only if

Ã(k)T P + PÃ(k) < 0 (26)

ZT P + PZ ≤ 0 (27)

hold for all k sufficiently close to one. As we have seen above, this implies that A(k)Z
cannot have negative real eigenvalues for all k sufficiently close to one. We shall show that
AZ having an eigenvalue at the origin whose multiplicity is greater than one contradicts
this statement.

By assumption, Z has a single eigenvalue at zero; a corresponding eigenvector is the vector
b. Clearly, b is also an eigenvector corresponding to a zero eigenvalue of A(k)Z. Now choose
any nonsingular matrix T whose first column is b. Then,

T−1A(k)ZT =

(
0 ∗
0 S + krsT

)
(28)

and the eigenvalues of A(k)Z consist of zero and the eigenvalues of S + krsT . Note that
the matrix S must be invertible since

T−1Z2T = T−1A(0)ZT =

(
0 ∗
0 S

)

and Z2 has only a single eigenvalue at zero. Now suppose that AZ = A(1)Z has an
eigenvalue at the origin whose multiplicity is greater than one. Then S + rdT must have a
eigenvalue at zero; hence, det

[
S + rsT

]
= 0. Since S is invertible,

det
[
S + krsT

]
= det[S] det

[
I + kS−1rsT

]
= det[S] (1 + ksT S−1r) ,

and we must have 1 + sT S−1r = 0 which implies that sT S−1r = −1. Hence,

det
[
S + krsT

]
= det[S](1− k) .

Suppose det[S] > 0. Then,
det

[
S + krsT

]
< 0

for k > 1. Since det
[
S + krsT

]
is the product of all the eigenvalues of S + krsT and

complex eigenvalues occur in complex conjugate pairs, S +krsT must have at least one real
negative eigenvalue when k > 1. This yields the contradiction that A(k)Z has a negative
real eigenvalue when k > 1. The conclusion is the same for det[S] < 0.

4 Examples

In this section we present two examples to illustrate the main features of our result.
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Example 1 (No quadratic Lyapunov function) : Consider the dynamic systems
ΣA1 : ẋ = A1x and ΣA2 : ẋ = A2x with:

A1 =




0 1 0
0 0 1
−1 −2 −3


 , A2 = A1 − ghT =




0 1 0
0 0 1
0 −1 −2


 ,

with gT = [0, 0, 1] and hT = [−1,−1,−1]. Note that A1 is a Hurwitz matrix; whereas A2

is singular with all its eigenvalues in the open left half of the complex plane, except one at
the origin. Note also that (A, g) and (A, h) are controllable and observable.

The matrix product A1A2 is given by:

A1A2 =




0 0 1
0 −1 −2
0 2 4


 .

The eigenvalues of the matrix product A1A2 are (0, 0, 3). Hence, from the results of our main
theorem, there cannot exist a P = P T > 0 such that AT

1 P +PA1 < 0 and AT
2 P +PA2 ≤ 0.

Example 2 (Quadratic stability) : Consider the dynamic systems ΣA1 : ẋ = A1x and
ΣA2 : ẋ = A2x with:

A1 =




0 1 0
0 0 1

−0.9 −1.9 −2.9


 , A2 = A1 − ghT =




0 1 0
0 0 1
0 −1 −2


 ,

with gT = [0, 0, 1] and hT = [−0.9,−0.9,−0.9]. Note that A1 is a Hurwitz matrix; whereas
A2 is singular with all its eigenvalues in the open left half of the complex plane, except one
at the origin. Note also that (A, g) and (A, h) are controllable and observable.

The matrix product A1A2 is given by:

A1A2 =




0 0 1
0 −1 −2
0 2 3.9


 .

The eigenvalues of the matrix product A1A2 are (0, 0.0349, 2.8651). Hence, from the main
theorem, there exist a P = P T > 0 such that AT

1 P + PA1 < 0 and AT
2 P + PA2 ≤ 0.

5 Concluding remarks

In this note we have derived necessary and sufficient conditions for the existence of a
common quadratic Lyapunov function for a pair of stable linear time-invariant systems
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whose system matrices are of the form A, A − ghT , and where one of the matrices is
singular. Future work will involve extending our results to non-quadratic stability criteria
such as Popov.

References

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory. Philadelphia: SIAM, 1994.

[2] H. Khalil, Nonlinear systems: Third Edition. Prentice Hall, 2002.

[3] R. Shorten and C. King, “Spectral conditions for positive realness of SISO systems,”
IEEE Transactions on Automatic Control, vol. 49, pp. 1875–1877, Oct 2004.

[4] R. Shorten, P. Curran, K. Wulff, and E. Zeheb, “A note on positive realness of trans-
fer function matrices.” Accepted for publication by IEEE Transactions on Automatic
Control, 2007.

[5] Z. Bai and W. Freund, “Eigenvalue based characterisation and test for positive real-
ness of scalar transfer functions,” IEEE Transactions on Automatic Control, vol. 45,
pp. 2396–2402, 2000.

[6] G. Muscato, G. Nunarri, and L. Fortuna, “Singular perturbation approximation of
bounded real and positive real transfer matrices,” in Proceedings of ACC, 1994.

[7] R. E. Kalman, “Lyapunov functions for the problem of Lur’e in automatic control,”
Proceedings of the national academy of sciences, vol. 49, no. 2, pp. 201–205, 1963.

[8] K. Narendra and J. Taylor, Frequency Domain Criteria for Absolute Stability. Academic
Press, 1973.

[9] A. Acikmese and M. Corless, “Stability analysis with quadratic Lyapunov functions:
Some necessary and sufficient multiplier conditions,” Systems and Control Letters,
vol. 57, pp. 78–94, 2008.

10


